
t _

F _
L _

L ----- -

E _

ULTIMATE WIND SENSING CAPABILITIES

! OFTHE JIMSPHERE AND OTHER
t 2.

| R_G BALLOONSYSTEMS

i

|

......... l

Lj byj,_,.e_K. _.,,e,'s,,,_ ch,,.l_ D. M,,cA,.th,,,-

L e,__-ep--_'by
N-_SITY OF DAYTON ...... _ _ :_ ................... : .....

tyton, Ohio 45409

"ge C. 3larshall Space Flight Center

I

)



- m

_ r--

)

j ....

_ !

]]
...... : ....___. =_=- ]-L ___ J

]_T__2 _ -

_ . . --_

p



TECHNICAL REPORT STANDARD TITLE PAGE

RFPORT NO. " 12. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.

1NASA 0R-2048

4. TITLE AND SUBTr/LE

ULTIMATE WIND SENSING CAPABILITIES

OF THE JIMSPHERE AND OTHER RISING BALLOON SYSTEMS

5. REPORT DATE

June 1972

6. PERFORMING ORGANIZATION COO'E

7. AUTHOR (S) 8. PERFORMING ORGANIZATION REPORT

James K. Luers and Charles D. MacArthur

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.

University of Dayton

Research Institute

Dayton, Ohio 45409

12. SPONSORING AGENCY NAME AND ADDRESS

NASA

Washington, D. C. 20546

1I. CONTRACT OR GRANT NO.

NAS8-26600

I3. TYPE OF REPORT & PERIOD COVERED

CONTRACTOR REPORT

14. SPONSORING AGENCY CODE

;5. SUPPLEMENTARY NOTES

16, ABSTRACT

The error in the magnitude of the horizontal wind field as computed for balloons

with linear and quadratic rlse rates ascending through a light, moderate, or severe wind

field has been derived. The linear and quadratic rise rate functions chosen span the

set of all practical rise rate functions for a rising balloon. The rlse rate function

of the Jlmsphere Is analyzed as a special ease. Figures are presented which show the

wind error versus altitude for each rise rate, and each wind field, assuming linear

Ismoo_hing. The results and figures presented are useful in determining the ultimate

capability of rising balloon systems in general and for the Ji_nsphere system in parti'-

cular for measuring wind from the surface to 18 kilometers. Using the figures presented

one can estimate the wind accuracy that can be achieved by any type of rising balloon

by knowing only its rise rate behavior versus altitude. In addition, the figures can be

used in balloon design to determine what rise rate function is needed to achieve speci-

fied accuracies. For a specified rise rate function, the radius of a smooth and

roughened sphere needed to achieve the desired rise rate at various altitudes has been

derived. Since the rise rate depends largely upon drag coefficient, two different drag

coefficient curves were assumed - one for a smooth and one for a roughened sphere.

Tables are presented which show the balloon radius for smooth and roughened spheres

needed to achieve two-meter-per-second to 20-meter-per-second rise rates at 10 and 14 km

altitudes. The wind-followlng capability for balloons of each radius was also determined

Even balloons of very large diameter are shown to provide excellent response to fine

Iscale wind fluctuations.

17, KEY WORDS

Wind Profiles, Rise Rate, Balloon Sensor

_elf-lnduced Balloon Motion

19. SECURITY CLASSIF. (of Ibis Rport)

Uncl

18. DISTRIBUTION STATEMENT

120. SECURITY CLASSIF. (of thll raze) 21. NO. OF PAGES 22. PRICE

Uncl ill ,I $3.00

"For sale by the National Technical Information Service, Springfield, Virginia 22151





FOREWORD

This report was prepared by the University of Dayton Research Institute

for the National Aeronautics and Space Administration, George C. Marshall

Space Flight Center, Huntsville, Alabama under Contract NAS8-26600. Dr.

George H. Fichtl of Marshall Space Flight Center was the Technical Monitor

of the contract. The authors wish to thank Mrs. Nancy Fratini, Mr.

Christopher Johnston, and Mr. C. Frank Ball for their assistance in

preparing the computer programs used in this study. We are indebted t.o

them for many helpful comments and suggestions.

iii M191





TABLE OF CONTENTS

SE C T ION

I

II

III

INTRODUCTION ........

ACCURACY OF THE PRESENT FPS-16/JIMSPHERE

SYSTEM ..........

Sources of Error . . . . . . , .

Response of the ffimsphere to the Wind Field .

Self-lnduced Motion . . .

Radar Errors ......

Development of Methods for Predicting Error in

Wind Measurements . .

Derivation of Error Expressions.

Specifying the Accuracy of Wind Measurements

Frequency Response . .

Error Analysis of Selected Wind Profiles . .

Constant Direction Wind Fields - a "Worst

Case" Analysis .....

Frequency Response ....

Varying Direction Wind Fields .

Two "Special Case" Wind Profiles

Summary .....

OPTIMUM RISE RATES FOR WIND MEASUREMENTS

Specification of Wind Field .....

Radar Time Constant At ....

Determination of N .....

Determination of Cx = f(¢R'¢E'¢A'Z'W)'-- "

Linear Rise Rate ....

Quadratic Rise Rate .....

Wind Errors from Linear and Quadratic Rise Rate

Functions ........

Optimum Linear Rise Rate .

Optimum Quadratic Rise Rate

PAGE

1

2

2

2

4

5

7

7

10

15

17

17

31

33

37

42

44

45

46

46

-47

48

49

52

52

58

V



SECTION

IV

Effect of the Smoothing Interval on Wind Accuracy

Effect of the Time Constant on Wind Accuracy

BALLOON DIMENSIONS .......

Balloon Radius Versus Rise Rate . .

Smooth Spherical Balloons . . .

Rough Spherical Balloons . .

Wind Sensing Capacity of Fast Rising Balloons

Summary and Conclusions .....

REFERENCES

PAGE

76

79

8Z

83

83

89

9Z

94

I01

vi



LIST OF FIGURES

FIGURE

1

4

9

l0

ll

12

13

14

Amplification Factor and Phase Angle of the Jim-

sphere Response.

Rectangular and Spherical Coordinate Systems.

Relationship of the True, Measured, and Error

Standard Deviation Wind Vectors.

The Attenuation Factor, Dr, vs. the Fractional

Smoothing Wavelength, Qf, for Linear Smoothing.

Constant Direction Wind Profiles.

Wind Speed and Direction Error vs. Altitude for the

Light Wind Profile (At = 0.5 second).

Wind Speed and Direction Error vs. Altitude for the

Moderate Wind Profile (At = 0.5 second).

Wind Speed and Direction Error vs. Altitude for the

Severe Wind Profile (At = 0. 5 second).

Wind Speed and Direction Error vs. Altitude for the

Light Wind Profile (At = 0. 1 second).

Wind Speed and Direction Error vs. Altitude for the

Moderate Wind Profile (At = 0. l second).

Wind Speed and Direction

Severe Wind Profile (At =

Wind Speed and Direction

Length for the Light Wind

Wind Speed and Direction

Length for the Light Wind

Error vs. Altitude for the

0. l second).

Error vs. Smoothing

Profile (At = 0.5 second).

Error vs. Smoothing

Profile (At = 0. l second).

Trajectories of Five Flights with Constant Wind

Direction.

PAGE

4

8

II

16

19

21

22

23

24

25

Z6

27

28

Z9

vii



FIGURE

15

16

17

18

19

20

21

22

Z3

24

25

26

27

28

29

30

31

32

Frequency Response Functions For Various

Smoothing Lengths.

x-y and x-z Trajectories of the Jimsphere for the

Varying Direction Wind Field.

Wind Speed and Direction Error vs. Altitude for the

Varying Direction Wind Profile.

Wind Speed and Direction Error vs. Smoothing

Interval for the Varying Direction Wind Profile.

Jet Stream and Calm Wind Profiles.

Approximate Jet Stream and Calm Wind Profiles.

Wind Speed and Direction Error vs. Altitude for the

Jet Stream Wind Profile.

Wind Speed and Direction Error vs. Altitude for the

Calm Wind Profile.

Error in Wind Magnitude for Linear Rise Rate Functions.

Error in Wind Magnitude for Linear Rise Rate Functions.

Error in Wind Magnitude for Linear Rise Rate Functions.

Error in Wind Magnitude for Linear Rise Rate Functions.

Error in Wind Magnitude for Linear Rise Rate Functions.

Geometric Interpretation of the Parameters Ct. _. and

of a Quadratic Rise Rate Function.

Error in Wind Magnitude for Linear Rise .Rate Functions.

Error in Wind Magnitude for Linear Rise Rate Functions.

Error in Wind Magnitude for Linear Rise Rate Functions.

Error in Wind Magnitude for Linear Rise Rate Functions.

PAGE

32

34

35

36

38

39

4O

41

53

54

55

56

57

59

61

62

63

64

viii



FIGURE

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

]_rror

Error In

Error in

in Wind Magnitude for Linear Rise Rate Functions.

Wind Magnitude for Linear Rise Rate Functions.

Wind Magnitude for Linear Rise Rate Functions.

Error

Error In

Error in

Error In

Error

Error

Error

Error

In Wind Magnitude for Linear Rise Rate Functions.

Wind Magnitude for Linear Rise Rate Functions.

Wind Magnitude for Linear Rise Rate Functions.

Wind Magnitude for Linear Rise Rate Functions.

in Wind Magnitude for Linear Rise Rate Functions.

in Wind Magnitude for Linear Rise Rate Functions.

in Wind Magnitude for Linear Rise Rate Functions.

in Wind Magnitude for Linear Rise Rate Functions.

Multiplicative Factor to Convert Wind Error for 25 Meter

Smoothing into Wind Error for 10 Through 100 Meter

Smoothing.

Multiplicative Factor to Convert Wind Error When the

Time Constant is 0.5 Second into Wind Error When the

Time Constant has Other Values.

Drag Curve for a Smooth Sphere.

Comparison Between Drag Curve for Smooth and

Roughened Sphere.

PAGE

65

66

67

68

69

70

71

72

73

74

75

77

81

85

9O

IX



LIST OF TABLES

TABLE

1

2

3

4

5

6

7

8

9

I0

CONSTANT DIRECTION WIND PROFILES.

SMOOTHING INTERVALS.

RADIUS AS A FUNCTION OF Z AT I0 KILOMETERS

ALTITUDE FOR SMOOTH SPHERE.

RADIUS AS A FUNCTION OF Z AT 14 KILOMETERS

ALTITUDE FOR SMOOTH SPHERE.

RADIUS AS A FUNCTION OF Z AT i0 KILOMETERS

ALTITUDE FOR ROUGHENED SPHERE.

RADIUS AS A FUNCTION OF Z AT 14 KILOMETERS

ALTITUDE FOR ROUGHENED SPHERE.

RATIO OF BALLOON VELOCITY TO WIND VELOCITY

FOR VARIOUS SMOOTH SPHERES AT I0 KILOMETERS

ALTITUDE.

RATIO OF BALLOON VELOCITY TO WIND VELOCITY

FOR VARIOUS SMOOTH SPHERES AT 14 KILOMETERS

ALTITUDE.

RATIO OF BALLOON VELOCITY TO WIND VELOCITY

FOR VARIOUS ROUGHENED SPHERES AT 10

KILOMETERS ALTITUDE.

RATIO OF BALLOON VELOCITY TO WIND VELOCITY

FOR VARIOUS ROUGHENED SPHERES AT 14

KILOMETERS ALTITUDE.

PAGE

18

19

88

88

91

91

95

96

97

98

X



A

A
S

A,A'

A,B

b

C D

D B

Df

N

g

Kp K 1 , K z

m I

m

gas
m

skin

N

q, q*

r

R

R,E,A

S,S'

AS

t

At, At'

V

W

W,W
x y

W

W,W
x y

LIST OF SYMBOLS

Cross sectional area of balloon

Surface area of balloon

Amplitude of wind field and balloon response respectively

Coefficients of linear segment of wind field

Constant of integration

Drag coefficient of balloon

Amplification factor of balloon response

Amplification factor of filter response

Dynamic error

Gravitational accele ration

Constants

Apparent mass of balloon

Mass of gas contained in balloon

Mass of balloon skin

Number of points fit by linear polynomial smoothing

Constants

Radius of spherical balloon

Reynolds number

Radar spherical coordinates

Length of linear smoothing intervals

Thickness of the skin of the balloon

Time in seconds

Radar time constants

Volume of balloon

Wind magnitude

Wind components in the x and y directions

True wind vector

Measured wind vector

x and y components of the measured wind vector

xi



Xp y, Z Cartesian coordinates of balloon

Carte sian balloon velocities

Carte sian balloon accele rations

Greek Symbols

a,_,¥

0

P

P
gas

P skin

0-
w

a" R, o- E, o-A

O" _0-.
X X

uo

Coefficients of linear and quadratic rise rate functions

Wind dire ction

Wavelength of wind field

Coefficient of viscosity of air

Density of air

Density of gas contained in balloon

Density of skin of balloon

RMS error in wind magnitude

RMS errors in radar spherical coordinates

Standard deviation of the error in x and :}

2_r times the frequency

xii



INTRODUCTION

The FPS-16 radar/Jimsphere rising balloon system is one of the most

accurate operational methods of obtaining detailed wind profile measurements

from the surface to eighteen kilometers. At present, the system can routinely

provide wind speed measurements to an RMS accuracy of about 0.5 meter per

second with a vertical spatial frequency resolution of about one cycle per I00

meters" [ 1]. Such wind data is sufficiently accurate to allow computation of

the important structural loads on space vehicles during the critical, high

dynamic pressure regions of flight. The ultimate accuracy achievable by the

FPS-16/Jimsphere system depends upon such factors as the influence of noise

in the radar data, the noise suppression capability and frequency response of

the data smoothing method, the geometry of the balloon trajectory, and, of

course, the ability of the balloon to respond to changes in the wind field

(balloon response). The first purpose of this study is to investigate the effects

of these and other factors on the accuracy of the FPS-16/Jimsphere system in

order to determine its ultimate wind measuring ability. The second purpose

is to examine the wind measuring ability of rising balloons possessing rise

rates other than the nominal five meter per second constant rate of the

Jimsphere. The main emphasis will be placed upon the influences of radar

noise, trajectory geometry, balloon rise rate, and smoothing techniques. In

the first section of the report, the accuracy of the present system will be

examined. The second section is devoted to an investigation of variable rise

rates and their effects on the system accuracy. Previous studies of the

balloon response and other aerodynamic characteristics will be briefly

re viewed.



ACCURACY OF THE PRESENT FPS-16/JIMSPHERE SYSTEM

Sources of Error

To determine the ultimate accuracy of the Jimsphere system the nature

of the sources of error must be considered. Since the central principle of

the Jimsphere system is the determination of winds from time history of

balloon position data provided by a tracking radar, the ability of the balloon

to respond to the wind and the ability of the radar to provide an accurate track

are of great importance. Accordingly, much study has been devoted to the

Jimsphere's aerodynamic characteristics and the effects of radar error. A

brief examination of some of the conclusions reached is given below.

Response of the Jimsphere to the Wind Field - Several investigators

have presented analyses of the dynamic response of rising balloons and falling

spheres to variations in the wind field [Ref. 1-6]. Reed [Z] and Eckstrom [3]

considered responses to linear wind speed variations, while Luers and Engler

[4] examined the response to sinusoidal changes of wind speed with altitude.

Zartarian and Thompson [1] considered wind profiles of both sinusoidal and

linear character for the Jimsphere and ROSE rising balloons. In each

investigation the response to vertical variations of totally horizontal winds was

examined under the assumptions of no vertical winds, constant rise rate, an

absence of lift forces, and motion confined to a vertical plane. In particular,

Zartarian and Thompson show that the 5imsphere's response to both types of

wind field is quite good. A measure of response is the dynamic error, E d,

which is defined as the horizontal sensor velocity subtracted from the true

horizontal wind velocity (E d = Wx -_)" Zartarian and Thompson have shown

that this dynamic error for linear wind fields is given by E d = C_L where

is the wind shear (meters]second) and L is the "lag distance", a function of

the balloon rise rate, mass, and the mass of displaced air. The Jimsphere

lag distance is about 1.5 meters so that even in a wind field of an unusually

large shear of 0. 1 sec -1 the dynamic error in wind speed is only 0. 15

meter per second, which is much smaller than other errors in the system.

The dynamic error for wind fields with a sinusoidal wind speed variation with



altitude is given by a considerably more complicated expression [ I]. A more

preferable method of expressing the response to sinusoidal variations is to

give the amplification factor, D B, and phase angle, _0B, of the balloon's

motion. The amplification factor is the ratio of the amplitude of the balloon's

motion to that of the wind, or D B = Amp (_)/Amp(W) and the phase angle isx

the angle (in degrees) by which the balloon's sinusoidal motion lags the wind's.

Figure l, abstracted from [l], presents the variation of D B and _B

with the wavelength of the wind field for two representative altitudes, 9 and

14 kilometers. From the figure we see that D B is above 0.9 and _0B below

15 ° for wavelengths longer than 30 meters, and that D B is very near 1.0 and

1° 2°
_B near and at wavelengths longer than 90 meters. If we adopt a

criterion of a 10% allowable error in amplitude, it can then be said that the

Jimsphere is an adequate sensor (in terms of dynamic response) for sinusoidal

wind variations of wavelengths as short as approximately 30 meters. At

these wavelengths the balloon motion is about 15 ° "behind" the wind motion.

For these reasons the Jimsphere is usually assumed to be a perfect wind

sensor for large horizontal variations in the wind field. Thus, the balloon's

horizontal velocity components are taken as those of the wind.

DeMandel and Krivo [5] have investigated the ability of the Jimsphere

system to detect vertical winds and have concluded that up to 15 kilometers

the system is capable of resolving vertical wavelengths greater than 250

meters with an RMS vertical wind speed accuracy of five centimeters per

second. Fichtl [6] has analyzed the Jimsphere response to vertical variations

of both the horizontal and vertical components of the wind in light of the

proposed use of the Jimsphere system for the detection of clear air turbulence.

His study shows that it may be possible to use the Jimsphere to detect

turbulence (at least below 13 kilometers) if proper data reduction techniques

can be developed and careful attention is paid to the balloon's response

cha racte ristic s.
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Figure 1. Amplification Factor and Phase Angle of the

Jimsphere Response.

Self-Induced Motion - Included in any discussion of the aerodynamics

of rising spherical balloons must be a mention of the phenomenon of self-

induced motion. A number of investigations of the self-induced motion of

balloons have been made [Ref. 7-1Z]. Most recently Fichtl et al. [12] have

examined the aerodynamic characteristics and self-induced motion of the

Jimsphere, which was designed expressly for reducing the self-induced motions

originally observed in the smooth-skinned ROSE series of balloons. Fichtl's

work shows that the Jimsphere can be expected to execute self-induced,

oscillatory motion, predominatelyin the horizontal plane, at frequencies in

4



the vicinity of 0.21 Hz. The exact frequency (or wavelength) of the oscillations

depends upon Reynolds number, but wavelengths usually between 21 and 26

meters may be expected assuming a constant rise rate of five meters per

second. Certainly the effects of these motions must be taken into account if

data processing methods are to be devised to resolve the finer details of wind

profile s.

Radar Errors - Radar tracking of the Jimsphere is presently

accomplished with the AN/FPS-16 radar, a high accuracy, monopulse, range-

tracking radar. A detailed error analysis of the FPS-16 has been given by

Barton [13]. The performance of this radar in tracking superpressure

balloons has been examined by Zartarian and Thompson [ 1], Scoggins [ 14],

and Engler, et al. [15, 16]. The errors associated with the radar may be

generally divided into two groups: noise errors and bias errors. Of these,

noise errors are of much greater importance since the noisy position data

must be smoothed and differentiated to obtain winds. The noise error in the

winds is a direct effect of the original noise in the position data. Bias errors,

however, have virtually no effect on wind computations due to the nature of

the differentiation process. A further distinction can be made between "fixed

(noise) errors" which have approximately constant values and "variable (noise)

errors" whose magnitudes depend upon the operating conditions of the radar,

the state of the atmosphere, etc. Fixed errors therefore constitute a lower

limit on the error values for any tracking condition. A comprehensive

description of the fixed and variable errors is given in [1] . For the purposes

of this study, the values of noise error have been assumed to represent good

tracking conditions. For good tracking conditions, i.e., clear weather,

slant ranges less than 100 kilometers, elevation angles above 10 ° etc.

the RMS noise errors of five meters in range (OR) and 0. 1 mils in elevation

and azimuth (OE and _A ) have been used. These values are approximately

those specified by the manufacturer, and may be somewhat conservative

(especially for range measurements below 50 kilometer slant ranges where

values of _R as small as 1.5 meters have been quoted [ I] , [ 15]). The



character of the noise is assumed to be thermal, so that no correlation

among individual errors exists. For simplicity, the values of the RMS noise

errors (_R' @E' and _A ) are assumed constant throughout the measurement

space of the radar. The limits of this space are taken to be: a maximum

slant range of 150 kilometers, 360 ° in azimuth angle, and 5 ° to 85 ° in

elevation angle. In reality, of course, these limits may be severely reduced

by atmospheric conditions, clutter, etc. In order to take this into account

we have noted situations where the slant ranges or elevation angles under

consideration exceed 100 kin. or fall below 10 ° respectively, in these long

slant range and/or low elevation angle situations the noise error will be

quite dependent on the radar's environment.

The servobandwidth setting at which the radar is operated is critical

in determining how quickly the radar can respond to changes in the target

position. This response is in turn reflected in the independence of the

successive data points which result from the digitization of the analog

tracking signals. Low bandwidth settings serve to reduce noise error but

make the response sluggish and consequently introduce correlated servo

response errors in the digitized data. High bandwidth settings reduce these

errors but increase the effects of thermal noise. Engler, et al. [15, 16]

have studied this problem in tracking with the AN/FPS-16 and have observed

that for the medium bandwidth setting of five, correlation (or dependence)

may exist between data points as much as 2.0 seconds apart. With high

bandwidth settings, e. g. , 7.5, the time between independent points (the time

constant of the radar) drops to about 0.3 second. At the upper limit of 10,

0. 1 second independent points may be observed, but the situation is complicated

by the fact that the servo system may now be underdamped. One solution to

this problem has been to average five consecutive 0. 1 second data points to

obtain independent 0.5 second data [17]. In this work both 0. 1 second and

0.5 second sample rates have been examined in the hope that most situations

will be covered.

6



Development of Methods for Predicting

Error in Wind Measurements

The function of the data reduction process is to abstract the desired

wind information from the raw data in the most accurate and efficient manner

possible. In this section we will examine the propagation of errors through

the data reduction process to the final wind measurements. It will be assumed

that the data reduction process consists of fitting raw coordinate data points

with a linear polynomial by the method of least squares, and using the first

derivative of this polynomial as the value of the velocity at the center of the

smoothing interval. This smoothing technique has been described by Engler,

Luers, and McCloskey [15], who have shown that linear polynomial smoothing

is a most desirable method in terms of reducing noise error for determining-

wind data for ascending balloon sensors.

The nature of the noise error in the radar generated balloon coordinates

will be assumed to be random and Gaussian with no correlation among different

radar spherical coordinates at the same point in time and between values of

the same coordinate at successive time points. These assumptions, while not

always completely valid as mentioned above, usually suffice for FPS-16 data,

provided that the radar has been properly operated and maintained.

A final assumption will be made that the wind field in which the balloon

flies will have no vertical components. Although, as mentioned above, some

study has been given to the use of the Jimsphere as a sensor of vertical winds,

the present operational system is intended as a purely horizontal wind sensor.

Therefore, we will confine our analysis to errors in the measurement of

horizontal winds.

Derivation of Error Expressions - The coordinate system used in the

error analysis is shown in Figure 2. Raw radar data consists of a time series

of sets of the three values: range, R, elevation angle, E, and azimuth angle, A.

7



z

Y

Figure Z. Rectangular and Spherical Coordinate Systems

The relation of R, E, and A to the rectangular coordinate system,

x = R cos E cos A

y = R cos E sin A

z = R sin E

is given by

(1)

(For the purposes of this analysis correction for the earth's curvature has

been ignored.)

Applying the differential error approximation, small errors in x, y,

z can be given in terms of errors in R, E, and A by

q is:

and

dx = (cos E cos A)dR - (R sin E cos A)dE - (R cos E sin A)dA

dy = (cos E sin A)dR - (R sin E sin A)dE + (R cos E cos A)dA (2)

dz = (sin E)dR + (R cos E)dE

The definition of the error variance (mean square error) of a quantity

z < < dq z¢ = (dc0z > _ >
q

8



where < dq> denotes the expected value of an error dq. If the errors in R,

E, and A are assumed to be random then <dR> = <dE > = <dA> = 0. The error

variances (mean square errors)in x, y, and z, denoted by cr z z and ¢ z, ¢ j J
x y z

can be obtained from Equations (2) by squaring and taking the expected value

of both sides. The expected value of the cross terms (i.e., those containing

dRdE, dRdA, and dEdA) on the right hand side will be zero by the assumption

of independence of errors in the radar measured coordinates. The error

variances in the rectangular position coordinates are then

Z
0" --

x

Z
0- --

Y

Z
0- =

z

(cos z E cosZA)o - z + (RZsinZEcosaA) o-
R E z + (R z cosZA sinZE)o-Az

Z

z + (R zsinzEsinzA)o_Ez + (RZcosZAcosZE)o. A(c°sZ E sinZ A)°- R

(sinZE)o-RZ + (RZcosZE)o-Ez . (3)

To obtain velocity, the position coordinates are numerically differentiated

by fitting a linear polynomial to a given number, N, of points and using the

value of the derivative of the polynomial as the velocity at the midpoint of the

N point interval. The data fitting (or smoothing) is accomplished using a

least squares - Legendre polynomial technique as described in reference [15].

It can be shown that the error variance in velocity resulting from this technique

is given by

' [ -I'¢ . = - - ¢ (4)
x N(N z At z x

W =x andW
x y

where _. z is the variance of x velocity errors, ¢ 7 the variance of x position
x x

errors, N the number of points in the fitting interval, and At the time spacing

of these points. Similar expressions apply to the velocity error variances in

y and z. It should be noted that the Legendre polynomial smoothing technique,

and hence Equation (4), are applicable only if the data points are equally spaced

in time, which is the usual case with FPS-16/Jimsphere data. As previously

mentioned, the Jimsphere may be assumed to be a perfect wind sensor so that

= y , and

z z
= ¢. _a,

wx x

Z z¢ = ¢ . . (5b)
wy y

9



We have, by our assumption of a purely horizontal wind field, included

in Equations (5) only x and y wind component errors. It may be mentioned that

the error in z position, _ , will introduce uncertainty in the altitude at which
z

to assign a wind measurement. However, the uncertainty in z is normally so

small (usually one or two meters at most) compared to the total 18 kilometer

altitude of the flight that the error is negligible.

o- z = [ 12 q [ z + RZ(sinZEcosZAo_EZ+cosZEsinZAo.AZ)]wx N(N z-1)A_z J cos 2Ecos 2A_R

(6a)

z = [ 12 ] [cosZEsinZA.RZ + RZ(sinZEsinzA_Ez+CosZEcoszA_AZ)]_wy N(N{'_'I) At z

(6b)

i

The methods of using _ and _ to specify errors in measured wind
wx wy

profiles are presented in the following section,

S_ecifying the Accuracy of Wind Measurements - A complete description

of a wind measurement at a given altitude must include both a wind speed and

a wind direction or heading. Owing to this vector property of the wind field,

several different methods of specifying the accuracy of a w{nd measurement

are possible. In this section we will examine these methods.

Figure 3 shows a measurement of the wind vector, W, at an altitude,

of the wind is shown by the vector Wt which may not havez The true value@

the same magnitude or direction as W. If there are no vertical winds, both

_/t and W lie in a plane parallel to that of the x and y axes and may be

resolved into x and y components along these directions. The angles made

by Wt and W with the x axis (clockwise being positive) are denoted as

6) and @, respectively. The noise errors in the components of W have been
t

given in Equations (6). The problem, therefore, is how to use these

component errors to provide an estimate of the error in the measurement of

the wind vector.
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Figure 3. Relationship of the True, Measured, and

Error Standard Deviation Wind Vectors.

The first attempt at specifying the accuracy of a wind measurement

might be to just give the RMS errors _ and _ , in other words, giving
wx wy

the accuracy of the x (zonal or downrange) and y ( meridianal or crossrange)

components of the wind. This approach is not desirable for two reasons.

First, of course, it does not give a direct estimate of the accuracy of the

measurement of the actual wind field at an altitude, and, second, the values

of _ and _ are dependent on the orientation of the coordinate system
wx wy

Z
to the wind vector. It has been shown above that _ can be written as

WX

z K[cosZEcosZAo_ z+ RZ(sinZEcosZAo. EZ+cosZEsinZAo-AZ)_ (7a)wx R

and

z K[cosZEsinZAo. RZ + RZ(sinZEsinZAo_ z + cosZEcosZAo.AZ)_(7 =

wy E
(7b)
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where K is a constant which depends only upon the smoothing technique.

Examination of Equations (7a) and (7b) shows that, as _ht be expected,

the values of _ z and _ z depend on the azimuth angle, A. Therefore,
wx wy

this method of specifying the wind accuracy is dependent on the x-y

orientation of the coordinate system, which is not desirable.

The dependence on the coordinate system may be eliminated by adding

(7a) and (7b), that is, let

o--z = o- z + o- z (8)
w wx wy

where _ z is to be defined as an estimate of tile error in the wind measurement.
w

Substitution in (8) from (7a) and (7b) results in

z + RZ(sinZEo_ z + cosZEo_ z)] (9)°'-'Zw = 2K[c°sZE°-R E A

from which we see that the dependence on A has been eliminated. By giving

__z, the mean square error, or e_, the RMS error, of a wind measurement,
w w

reference need not be made to a particular x-y coordinate system.

The approach of Equation (8), however, also has some drawbacks.

Equation (8) is not a measure of the expected error in the magnitude of W or

its direction, but a combination of both. In Figure 3 the measured wind

vector Wis shown as the sum of the true wind vector, Wt' and a vector

representing the error standard deviation, _. The magnitudes of the x and
w

y components of_-_ are _ and , so that the mean square error of
w wx wy

Equation (8) is the squared magnitude of the "vector deviation" of wind

measurement, _-_ = l_v ] . The value of _ is seen to depend on both thew

errors made in the determination of magnitude and direction of W. In many

applications there is a need to know the error in the magnitude of direction of

W separately. This Lnformation is not supplied explicitly by giving wind

error (as has been done previously [16, 18]) as defined by

J ,f
_Io- z + o- z = AIo- z z

w = V wx wy 'I :_ + _"
0--,

Y

12



To obtain separate expressions for the RMS errors in the magnitude

and direction of W, we can express the magnitude, W = ]W], and angular

direction, 0, as

W = (w z +W z)x/2
x y

(10a)

and

W

@ = tan -I ---Y-
W

X

(10b)

where W and W are the magnitudes of the x and y components of W.
x y

Applying the differential error approximation, errors in W and 0 may be

given in terms of errors in W and W as:
x y

and

_(W 2 + W z)l/z _(W z + W 2)1/2

dW = x y dW + x y dW
_W x BW y

x y

W
X

dW - dW
W x

W

+ ----_ dW
W y

(lla)

W W

d6- b (tan-I--Z) dW + _ ( tan-1 --t_ dW_W W x _W W y
x x y x

'[ ]d@ - WZ W dW - W dWx y y x

Squaring (lla) and (llb) gives

(dW) z

W zdW z + W zdW z + 2W W dW dW
x x y y x y x y

W z

(llb)

(12a)

and

W zdW z

(dO)Z = x y

+ W zdW z _ 2W W dW dW
y x x y x y

W 4
(12b)

13



Taking the expected value of each side of Equations (12a) and (12b),
W z W z ZWW

z x z Y z x y¢ - ¢ + ¢ + < dW dW >
w W 2 wx W z wy W a x y

(13a)

and

o"

W z W z 2WW

2 Y__ z x z x Z < dW dW >
@ - W 4 ¢ + W 4 ¢ W 4wx wy x y

(13b)

where the term <dW dW > is, in effect, the correlation in the errors in
x y

W and W • This term may be expressed in terms of O-RZ , ¢E z and CA zx y

in much the same manner as ¢ z and o- z
wx wy

[ ][< dW dW > = I2 z + R z sin z E CEx y N(NZ -]-)Atz sinAcosA(cos zE _ R

(14)

Substituting (6a), (6b), and (14) into (13a) and (13b) after some sim-

plification yields

¢ z = [ 12 3 1 [ z + RZsinZ E )w N(N2[])AtZ _'/ (W cosA + W sinA)Z(coszECR _E zx y

+ (WxCOSA - WysinA) a R a cos z E O-AZ qj (15a)

and

o" z = [ IZ 3 1 [ z + RZsinzE_EZ )O N(NZ_I)At z _-W (W cosA- W sinA)Z(cosZE¢ Ry x

+ (W sinA + W cosA) zR zcoszEo- z_ (15b)
y x A A

Equation (15a) gives the mean square error in the direction of the wind vector V

both in terms of the radar errors. It can be shown that ¢ z and _0 z have thew

desirable property of being independent of azimuth angle. Computing the wind

error as in (15a) and (15b) allows one to quote a wind measurement and its

accuracy as a wind speed of, say, W meters per second +¢ meters per second
W

o o

and a direction of 0 +¢e " We believe that this method of specifying wind

14



error is most desirable, and we will use Equations (15) as the definitions of

wind error in the remainder of the report.

The quantities ¢w and ¢@ may be combined, if desired, to give the

magnitude of the vector deviation, 0-._, , as given by Equation (8). If we return
W

to 0- and o- as given by Equations (13) and multiply both sides of (13b) by W zw 0

and then add it to (13a) we see that

z z w 2 2o--_ = o" + ,. o-^
w w U

W 2 W z W z W z
x x 2Ew,-

+

2W W 2W W

x y x y < dW dW >
W z W z x y

2 2
= O- + O" •

wx wy

Thus, we have re-expressed Equation (8) in terms of the more useful

quantities ¢ z and ¢ z
w @ "

Frequency Response - An important property of any smoothing method

is its frequency response or attenuation characteristics. Engler and Luers

[31 have presented a method of finding the attenuation of the first derivative

for smoothing and differentiating sinusoidal position data by the linear fitting

technique.

Figure 4 from [3_ shows the attenuation factor Df as a function of the

"fractional smoothing wavelength r_, Qf, which is the fraction of a wavelength

over which the smoothing interval is taken. The attenuation factor gives the

magnitude of the velocity resulting from the smoothing in terms of the true

(sinusoidal) velocity, i.e., x = D? where xt is the true velocity andS t S

is the velocity resulting from the smoothing. The curve of Figure 4 may be

used to find the frequency response of a filter of any given length. The

attenuation, Df, for a given wavelength, ko, is given by the equation of the

curve as shown with Qf = S/k , where S is the smoothing interval lengtho

15
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Figure 4. The Attenuation Factor, Df, vs. the Fractional

Smoothing Wavelength, Qf, for Linear Smoothing.

in meters. For values of Qf from 0 to about 1.43 the effect of the smoothing

is to continually decrease the amplitude at a given wavelength without producing

a phase shift. At Qf = 1.43 ko the smoothing has completely removed

oscillations of this wavelength from the data. Above Qf = 1.43 the attenuation

factor becomes negative and the oscillations appear again but are 180 ° out of

phase with the true velocity sine curve.
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Error Analysis of Selected Wind Profiles

The method of error analysis derived in the previous sections has

been applied to various wind profiles selected to be generally representative

of those encountered in measurements by the FPS-16/Jimsphere system. Our

main purpose is to show how the errors in wind speed and direction depend

upon such factors as wind direction and magnitude {or alternatively the geometry

of the balloon trajectory), sample rate, smoothing interval length, and radar

noise error. The frequency response functions will also be presented for the

smoothing intervals used.

Constant direction wind fields - a "worst case" analysis - We consider

first situations in which the wind direction is constant over the entire 18

kilometer ascent. The launch point of the balloon is assumed, as in all cases,

to be at the radar site. As mentioned above, the quantities ¢ and ¢ are
w O

independent of azimuth angle so, for simplicity, the wind direction may be taken

as parallel to the x (downrange) axis. Equations (15) will then reduce to

z = ¢ z = [ 12 ][ z + RZsinzEcEZ- ]w wx N(N _ _'l)At z cos zE o-R _ (16a)

and

Z
0"

¢@ W z-- = N(NZ-i-)At 2 j RZcosZE¢ A j • (16b)
x

For any given smoothing interval length, time constant, and wind speed vs.

altitude profile, the Jimsphere will have, at a given altitude, the largest slant

range and smallest elevation angle when the flight is made in a wind field of

constant direction. Therefore, we see immediately upon examining (16b) that

the value of ¢ is a maximum when the wind field has constant direction. It
@

is not difficult to show that 0- in (16a) also takes on maximum values when R
w

is large and E is small.

Equations (16) were used to compute the RMS error in wind speed

and direction versus altitude for three constant direction wind profiles. The

17



profiles, shown in Figure 5 and Table 1, were from the "Design Scalar Wind

Speed Profile Er_velopes (Steady State) for the Eastern Test Range" presented

on page 5. 172 of "Terrestrial Environment (Climatic) Criteria Guidelines

for Use in Space Vehicle Development," 1969 Revision, NASA TM 53872 [19].

The "severe" and "moderate" profiles are the 95th and 50th percentiles,

respectively. The "light" profile was obtained by taking wind speed values of

about half of the "moderate" values. The values of the radar errors used

were those mentioned above for "good" tracking conditions, namely _R = 5 meters

and _ =¢ = 0. l0 mils. Two values of the sample rate were used, two points
E A

per second (At=0.5) and 10 points per second (At=0. l). All smoothing was

assumed to be by linear least squares fitting with Zegendre polynomials, with

the slope of the line taken as the velocity at the midpoint of the smoothing

interval. A number of smoothing intervals were examined. Their lengths

in meters and" the number of 0. l or 0.5 second points which they contain are

given in Table 2.

was assumed.

In every case a constant rise rate of 5.0 meters per second

TABLE 1

CONSTANT DIRECTION WIND PROFILES

Altitude Range

Ikilome ters)

0 to I0

i0 to 14

14 to 18

G round Wind

Speed{m/s)

Shears (1/sec)

Light Mode rate Se ve re

0. 0017 0. 0041 0. 0060

0.0 0.0 0.0

-0.00 17 -0. 0052 -0. 0083

3.3 6.0 15.0

The results of these calculations are shown in Figures 6 through 13. Two

types of plots are presentei:t: 1) the variation of RMS wind speed error (Crw)

and the RMS wind direction error (0- O) with altitude and Z) the variation of cr w

and 0- 0 with smoothing interval length for several representative altitudes°

The plots of
w

and ¢ versus altitude are divided into two groups, the first
O

18
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Figure 5. Constant Direction Wind Profiles.

Interval Length

(Meters)

I0

Z5

37.5

5O

i00

TABLE Z

SMOOTHING INTERVALS

Number of 0. I Second

Data Points

Number of 0.5 Second

Data Points

21

51

76

101

2O l

5

II

16

21

41

19



in Figures 6 through 8, for a time constant (At) of 0.5 and the second, Figures

9 through iI, for At = 0. 1. All three wind profiles are included in each group.

Four plots of ¢ and ¢ versus smoothing interval are given in Figures IX and
w @

13, all for the light wind profile. Finally, in Figure 14 the K-Z balloon

trajectories for the three wind fields are shown along with several elevation

angles for comparison. In some figures, sections of the curves are shown as

broken lines and vertical broken lines appear at certain altitudes. The broken

sections of the curves indicate slant ranges above 100 kin. The curves are

terminated prematurely if the slant range exceeds 150 kin. The left most

o
vertical line indicates an elevation angle of 10 and the right most vertical

line an elevation of 5°.

The effects of the variations of altitude, smoothing interval length,

and time constant expected from an examination of Equations (16) are apparent

in the figures. In all the plots of _ and _@ versus altitude we see that
W W

shows a small increase with increasing altitude whereas _....J increases rapidly

with altitude. These variations may be understood by examining the terms

(cosZE0_ Rz + RZsinZE_EZ ) of(14a) and (RZcosZEo'AZ)/WxZ of (14b). For

the first few kilometers of the flight, elevation angles are relatively large

(30 to 50 ° ) and slant ranges small (1 to 3 or 4 kilometers). In these regions

more of the balloon motion appears as elevation angle change than later where,

at higher altitudes and larger slant ranges, elevations are small (5 to 10 ° ) and

z) and (R zsin zE_E z) of _ z arealmost constant. If the terms (cos zEeR w

evaluated for various altitudes, it will be seen that the former is always much

greater than the later. Therefore, the behavior of ¢ z is primarily that ofw

(cos zE0-R z) and, since 0-RZ is always constant, almost that of cos zE. So,

at low altitudes, _ increases as elevation decreases with z, and at medium
w

and high altitudes ¢ becomes almost constant as more and more of the balloon
w

z does notmotion lies along the slant range direction. The expression for @

contain the cos zE_Rz term, but contains the term (R zcos zEtA z)/Wxz. The

behavior of this term is to constantly increase with increasing altitude and

range so that _0 always increases. For the particular wind profile shapes
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used in our examples, W increases to I0 kilometers, then remains constant
X

to 14 kilometers and finally decreases thereafter. Being the denominator

of the fraction, the added effect of W is to slow the increase of 0-@ to tenx

kilometers, not effect the value between ten and 14 kilometers, and then to aid

the growth of _@ to 18 kilometers. The light wind profile shows the altitude

effect on _ to the greatest degree since large values of elevation and smaller
w

slant ranges occur in that case. The altitude effect on .@ is largest in the

severe profile where large slant ranges cause large direction errors.

The effects of smoothing interval length and time constant enter through

the term N(N_-_-I)&t z in both Equations (16). Holding the time constant, ZXt,

fixed and increasing the length of the smoothing interval, i.e., increasing the

number of points, N, makes the term smaller and so decreases the value of

0- and 0- ° Since N appears to approximately the third power in the denominator
w @

the decrease is quite rapid at first and much slower later, as noted in Figures

12 and 13. For example, in the light wind case with a At of 0.5 second,

increasing the smoothing interval from 10 to 25 meters reduces the RMS wind

speed error from about 3.0 meters per second (at 10 kilometers) to about

0.9 meters per second, while an increase from 35 meters to 50 meters results

in a decrease from about . 60 meter per second to about 0. 35 meter per second.

To hold the smoothing interval length fixed and vary the time constant requires

not oniy varying At but changing the number of points, N, in a consistent manner.

For exampie, smoothing over 25 meters of altitude requires 51 0. 1 second data

points or 11 0.5 second data points (see Table 2). The increased number of

points obtained by usinga smaller value of At serves to reduce the value of the

term (12/N(N z-l)At z) since N appears to power one higher than At. The

smoothing interval length, S, in meters may be expressed as S = (N-I)AtZ

where Z is the rise rate. If we rearrange the above expression as

At = S/(N-I)Z and substitute into the factor 12/N(N z-l)At z, the factor becomes

12(N-1)Z z/N(N+i)S z which for large N is approximately 12Z z/NS z. Therefore,

if the smoothing interval, rise rate, etc. are fixed and At and N allowed to vary,

the RMS errors in wind speed and direction are (by Equations (14)) inversely
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proportional to the square root of N. For 25 meter smoothing with At = 0. l,

the value of [12/N(NZ-l)At zl i/z is 0.0951 while for At = 0.5 the value increases

to 0. 1907. Comparing, for example, the moderate wind profiles for 25 meter

smoothing at ten kilometers, we see that the value of _ for the half second
w

time constant is 0.95 meter per second while for the tenth second At the

value is 0.475 meter per second. A 50070 increase in accuracy is achieved

by using the smaller sample spacing.

Summarizing the constant direction results, the general behavior of

the wind speed RMS error for a given smoothing interval and time constant is

to remain almost constant over the entire altitude range. The RMS direction

error rises throughout the flight, especially sharply above 14 kilometers.

Smoothing interval length and sample spacing (time constant) have a large

effect on both wind speed and direction error. The best accuracy is achieved

when many closely spaced points are used with long smoothing intervals, as

must certainly be expected since more data is made available for "averaging

out" the random noise errors.

Frequency response. In choosing a particular smoothing interval

length, the attenuation properties of this filter must be considered in addition

to the noise suppression ability. For the filter lengths shown in Table 2,

Figure 15 presents their frequency responses to sinusoidal oscillations in

the data computed by the method outlined in a previous section. The velocity

attenuation factor, Df_ is plotted as a function of wavelength. A wind profile

may be considered to have an overall shape such as those used above with the

smaller details represented by sinusoidal wind oscillations superimposed on

the gross profile. This allows the use of Figure 15 with the above noise error

plots in an evaluation of a particular smoothing interval.

The figure also shows the response of the balloon (taken from Figure l)

and the wavelength region of the aerodynamic oscillations. With regard to the

balloon's response, we see that it is much more responsive to velocity changes

than any of the smoothing lengths, so that the ability of the Jimsphere system
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to detect fine wind details can be considered to be limited by the attenuation

characteristics of smoothing technique. Smoothing out of the self-induced

oscillations provides a convenient lower limit for a smoothing length. A length

of 37.5 meters (16 0.5 second or 76 0. l second points) removes almost all of

the oscillations in the 26 to 21 meter band, while keeping 90% of the amplitude

of 80 meter waves, a good frequency response. Shorter filters, e.g. 25

meters, may be used, but will retain some of the self-induced motion. Longer

filters," while further reducing noise error, significantly attenuate longer

wavelengths and so destroy much of the fine detail of the wind field.

Varying Direction Wind Fields. - In order to examine the effects of

changes in wind direction with altitude, F_luations (15) were applied to a wind

field in which the direction changes linearly through 90 degrees of azimuth

from the surface to 18 kin. The wind speed profile employed was the light

profile (Figure 5). Figure 16 shows the x-y and x-z paths of the balloon

throughout the flight. Plots of the RMS wind speed and direction errors as

functions of altitude and smoothing interval were made for several filter

lengths using the 0.5 second time constant. These plots are shown in Figures

17 and 18.

The wind speed error for this situation is not very different from the

constant direction cases examined above. Values of ¢ are relatively constant
w

throughout the flightp especially for the longer smoothing intervals. Comparing

the magnitude of the _ for 25 meter smoothing in Figure 17 to the correspondingw

value for the constant direction case, Figure 6, shows little difference in the

values obtained in the two cases. This may again be attributed to the dominance

z E zof the terms containing cosZE0- R over the terms with RZ0 - and indicates

that wind speed error is relatively independent of direction. Similarly when

the wind direction errors are compared for the constant and changing direction

causes_little difference is found between the two situations, Near the end of

the ascent the accuracy of the changing direction case is slightly better than

the constant case due to the shorter slant range values involved, The plots

33



I I ! I '" I I I I | '

v

X
v

0

0

3O

25

20

15

10

, J ,, ,I I I I I ,I
5 lO 15 20 25 30 35 40

Crossrange (y) (kin)

!
45

I I I I

15

E
10

@

/
/

Crossrange (y) (kin)

I I
40 45

Figure 16. x-y and x-z Trajectories of the Jimsphere for the

Varying Direction Wind Field.

34



I

E
v

O

3.0

Z. 0

1.0

| I I l II | I | |

I . I

Smoo thing

f

l I
[ i

I 25m i
37.5m

50m

!
4

,_ lOOm ]
I I i I I

I0 12 14 16 18

Attitude (km)

A

@
@
t4

D

12

I0

6

4

I I I I

/
10 Meter /

Smoothing /

/

/
/

/
/

I j

i

25 t .- I

2 4 6 8 i0 12 14 16 18

Altitude (kin)

Figure 17. Wind Speed and Direction Error vs. Altitude for the

Varying Direction Wind Profile.

35



3.0

2.0

E

b

1.0

@

1

! I I i r i • I " I

18 km Altitude

2kin

12

I0

I I I I l I I ._. i ,!
g5 50 75 I00

Smoothing Interval Length (m)

I S I I I I I I I

18 km Altitude

a

8

6
a

10km

4 \

Z

25 50 95 i00

Smoothing Interval Length (m)

Figure 18. Wind Speed and Direction Error vs. Smoothing

Interval for the Varying Direction Wind Profile.

36



of ¢ and _ vs. smoothing interval are essentially similar to those for constant
w @

direction. It should be noted that we have chosen to analyze a case of a

"moderate" change in direction with altitude. Situations could be imagined, of

course, where the wind direction changes by 180 degrees or more so that

larger elevation angles and short slant ranges might occur near the end of the

flight. Such situations, however, were not considered to be realistic and so

were not examined.

Two "Special Case" Wind Profiles. - Two wind speed profiles of special

interest were analyzed assuming constant wind direction. The first profile was

that of a "jet stream" situation, a relatively thin layer of high wind speed

centered at about 1Z kin. The second was a "calm" profile in which wind speed

remained at a relatively low value over the whole flight. The particular shapes

of these profiles were obtained from two actual Jimsphere tests, Nos. 5364

(Jet stream) and 6610 (calm), made in 1966 at the Eastern test range. Figure

19 presents these profiles as taken from pp. 5. 196 and 5. 197 of [19]. In

order to make these profiles able to be input to the computer program which

performed the error calculations, they were approximated by profiles composed

of linear segments. These segmented profiles are also shown in Figure 20.

Plots of _ and _ vs. altitude for both profiles are given in Figures 21 and 22.
w e

Considering first the jet stream profile, the values of _ of each smoothing
w

interval are again relatively constant reflecting the dominance of the cosZE

term. The magnitudes of the RMS errors are about the same as the moderate

constant direction profile of Figure 7. Direction error shows an overall

behavior much like the moderate profile except for a "dip" in the high wind

speed region around 12 kin. This is explained by noting that the expressions

for _@z (13b) or (14b) have W z in the denominator which, having a large value

in these regions, reduces the value of _8" For the calm profile the Cw curves

are very flat. This reflects the rather high ground wind speed and the small

shear so that even though the wind speed is low at the upper altitudes the

balloon has an appreciable slant range above Z kin. The curves for direction

error rise smoothly to values somewhat above the values for the moderate two

dimensional case, again showing the effect of large slant range.
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Summary. Several general conclusions based upon the above results

can be made concerning the nature of wind errors in the FPS-16/Jimsphere

system. These conclusions are listed below.

I. The trajectory of the Jimsphere is usually of such a shape that low

elevation angles and small changes in elevation angle occur after the first one

or two kilometers of altitude. The majority of the balloon motion is then along

the range direction. Consequently , the error in wind magnitude is primarily

dependent on the range error, and since range error is independent of range,

u is almost independent of altitude (for ranges within the capabilities of the
W

FPS-16 radar). Wind direction error, however, is a strong function of range

and thus of altitude.

2. The plots of smoothing interval length vs. RMS error in wind magnitude

or direction show that smoothing lengths in the 25 to 50 meter region are

most desirable in terms of noise error and frequency response. Filters of

these lengths proved a significant reduction in noise error over shorter filters,

and are not much poorer than filters of greater length. In particular a filter

length of 37.5 meters and a time constant of 0.5 second will provide wind

magnitude RMS error below 0.6 meter /second and direction errors below

2.5 degrees (below 1.0 degree for altitudes less than 14 kin.) for the severe

wind conditions (Figure 8). The 37.5 meter length will smooth out almost

all of the self-induced balloon motion and yet retain about 0.9 of the amplitude

of waves of 80 meters in length (Figure 15).

The effect on the wind speed and direction errors of a wind field with a

moderate change in direction is slight. Similarly the results for two special

case profiles were little different from the results obtained with the normal

profiles. Both of these observations may be again attributed to the particular

shape of the Jimsphere trajectory in which most of the balloon motion lies

along the range direction.

3. For a given smoothing interval length, the least squares linear

smoothing technique provides RMS errors in wind speed and direction which

are inversely proportional to the square root of the number of independent
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data points in the interval. It is therefore desirable to obtain the closest

possible time spacing of data points when using any length of smoothing interval.
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OPTIMUM RISE RATES FOR WIND MEASUREMENTS

For balloon tracking with an FPS-16 radar, there are two quantities

that essentially determine the accuracy which is possible for fine scale wind

measurements. They are the rise rate of the balloon and the wind field to

which the balloon responds. These two quantities determine the geometric

position of the balloon relative to the radar site. Light wind fields will result

in a shorter distance between the balloon and radar than a severe wind field

and consequently, less severe tracking conditions. A fast rise rate will also

provide, at a given altitude, less severe tracking conditions than would occur

with a slower rising balloon, On the other hand, a fast rise rate is undesirable

because, as it passes through a given altitude layer, it provides fewer radar

data points than a slower rising balloon. Fewer data points produce less

accuracy in a wind measurement. Consequently, for a given wind field, an

optimum rise rate exists which provides a balance between desirable and

undesirable effects of both fast and slow rise ra_ balloons. In general, it will

be shown that a stronger wind field yields less wind measurement accuracy

than a light wind field and that the optimum rise rate is faster for strong wind

fields than for light ones.

The error in the wind magnitude has previously been derived as:

(W Zo- z +W Zo- z) 2W W

o- z = x wx y wy x Y <dW dW > (13a)
w W z + W z x y

whe re

W z = W 2 +W z
x y

The optimum rise rate for a given wind field ts defined as that rise rate which

minimizes Equation (13a). The error in wind direction has not been incorporated

into a definition of optimum rise rate for two reasons: a) Meteorologists are

generally more interested in having a very accurate estimate of wind

magnitude that may be in error by a few degrees direction than the converse
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and b) the error in wind direction is even more sensitive to the wind profile

than the error in wind magnitude as shown by the factor W 4 in the denominator

of Equation (13b).

As in the case of the Jimsphere, the assumption that the balloon is a

perfect wind sensor is made throughout this section. That is, the balloon

velocity X equals the wind velocity W , and also, therefore, o. = _ . In
x x Wx

a later section, the validity of this assumption for various diameter balloons

is examined. The error in the wind magnitude (hereinafter referred to as

wind error) as given by Equation (13a) is a function of the wind field and the

error in the velocity measurements of the balloon.

For linear smoothing over N position points the error in the balloon

velocity has already been given by Equation (4) as

Z12_
Z x

o-. = (4)
x N(N z - 1) At 2

A substiLution of Equation (4) into Equation (13a) shows the minimization

of Equation (13a) requires the following:

a)

b)

c)

d)

A specification of the wind field by the components W and W
x y

The time constant At of the radar

A definition of the number of points, N, used in the linear smoothing

A determination of 0- which is a function of the radar capabilities,
x

the balloon rise rate, and the wind field.

The four inputs to Equation (13a),

in the following paragraphs.

Specification of Wind Field - Unique specification of a wind field

requires two profiles - a wind magnitude versus altitude profile and a wind

direction versus altitude profile. The error in the wind magnitude in general

depends on both of these profiles. The only exception to this is if the wind

direction is constant at all altitudes (i.e., throughout the flight). For this

case, it has been shown that the error in wind magnitude is the same for all

that is, a, b, c, and d, are discussed

45



directions so that any direction may be chosen. Each wind profile that

exhibits a change in wind direction provides a unique wind error profile.

It is obviously impossible to assume all reasonable types of three-dimensional

wind profiles and find an optimum rise rate for each. What can be done is

to consider wind magnitude profiles only and assume the wind direction is

constant, a "worst case" analysis.

The wind profiles used to obtain optimum rise rates will consist of

wind magnitude profiles with direction assumed constant and along the X-axis.

In this case, the expression for error in wind magnitude, Equation (13a)

simplifie s to

2 2
o" = o- . (16a)

W WX

As in the case of the Jimsphere studies, the three wind profiles chosen

were the light, moderate, and severe wind profiles presented in Figure 5.

Radar Time Constant At - The radar time constant, At, is defined as

the minimum time spacing between radar measurements that have independent

errors. The time constant is dependent upon the servobandwidth of the radar.

For an FPS-16 radar and a servobandwidth of 7, At is approximately 0.5

second; for a servobandwidth of 10, At is approximately 0. I.

Determination of N - The number of points used in smoothing, N, can

be chosen so as to provide a wind measurement over a specified altitude

layer. N is related to the altitude layer, or smoothing interval by the

expression

S = (N-1)At;` (17a)

or

S

N - At; + 1 (17b)

where S is the smoothing interval defined in units of meters. When minimizing

Equation (4) to find an optimum rise rate function for a given wind profile,

the smoothing interval will remain fixed for all altitudes. Since the rise rate
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of the balloon will vary with altitude, N will be chosen in a compensatory

fashion so that the right side of Equation (17a),the smoothing interval, remains

constant. A constant altitude smoothing interval provides the same frequency

response (ratio of smoothed wind measurement to true wind) at all altitudes.

The smoothing interval has initially been chosen as 25 meters. The frequency

response function for 25-meter smoothing as well as for ten-meter through

100-meter smoothing has been presented in Figure 14.

Determination of 0- = f(0- , _ Z W) In terms of radar errors
x R E' (rA' '

and the Cartesian Coordinates of the balloon's position 0- is given by
x

z X z X _ Z z

_ X z _R z + 2 + yZ AZ (18)x +y2 +Z z _ o-E •

The factors CR' cE' and CA are nominally taken as:

0-R = 5 meters

O-E = . 1 rail

A = . 1 rail

The X, Y, Z position of the balloon depends upon the balloon rise rate

and the wind. As stated above, the balloon is assumed a perfect horizontal

wind sensor so that: W = :_ and W = Y. The X and Y position coordinates
x y

are obtained by integrating the wind field. That is,

'tX = W dt
t x

o

or

X = r t
t (Az + B)dt (19)

o

where the light, moderate, and severe wind fields given in Figure 5 are

specified in terms of linear segments W = Az + B for various values of the
x

constants A and B. The integration of Equation (19) requires than z be

expressed as a function of time. This is accomplished by taking into account
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the balloon rise rate. The balloon rise rate _ is specified as a function of z.

Thus, the differential equation _ = f(z) can be solved for an expression of

z = f(t). A substitution of z = f(t) into Equation (19) allows the determination

of x position.

Linear and quadratic functions of altitude have been chosen to define

the rise rate. The evaluation of the x-position (Equation (19)) for each of these

rise rate functions and the three linear segmented wind fields, light, moderate,

and severe, follows.

Linear Rise Rate - Let the rise rate be given by the linear function

whe re _5

; = pz+¥

and _{are constants.

1

t = _2n

or for z = f(t) as

The solution for t = f(z) is

(pz +
Y

= y(ept_l)
P

A substitution of Equation (20) into Equation (19) gives

(20)

X = f tt ['_-'_ (ePt-1)+ B] dt . (21)
O.

The solution of Equation (21) is

X = _- (ept-ept°) + (B- AY)(t-tp o) " (22)

Equation (22) expresses the x position of the balloon in terms of the coefficients,

A and B, of a linear segment of the wind fields and the coefficients _ and y of

the linear ris4 rate function. A substitution of Equation (22) into Equation (18)

allows the estimation of the error in the x position _ . A further substitution
x

of Equations (17a) and (18) into Equation (4) determines the wind error as a

function of the rise rate parameters. By varying _ and ¥ while holding all
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other parameters constant, the minimization of Equation (4) under the specified

conditions is permitted. The minimization is achieved under specified

conditions of fixed radar errors, a fixed wind field, and a fixed smoothing

inter val.

Quadratic Rise Rate - For a quadratic rise rate, we have

= az z +_z+¥ .

"The solution for t in terms of z when _2 _ 4c_y>0 is

1 [ 2Ctz + _ - ci_
t - _n + K (23)

q \ 2az+_ +q]

where K is a constant of integration and given by

1 2az +9 - q

K = t ---£n ( o __)o q 2az +_ +
O

and

q = (_z _ 4ay)l/z

Solving (23) for z explicitly yields:

- q- (p +q){e qt-qK)
Z = g

(z&eqt-qK _ 2(_)

Simplifying Equation (24) by introducing new constants gives

Z _-_

qt

K 1 KI e
qt qt

e + K z e + K z

whe re

{24)

KI = _ K2
2a

The position x is determined by

X

?t

J t
O

(Az + B)dt

(25)
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or, in terms of Equation (Z5),

x
AK_

=_t (qtt

o e + K z

AKI + B) dt
-qt

1 +Kze

Integrating give s

t

i (eqt+K zAKI t--- in ) ]
x - Kz q J t

0

- AK I [ t +l_n(1+Kze-qt)]
q

, It
+ B tt t

o o

or

x

Kz
- AK + B] (t-t) - A_K in(

o K 2 q

qt
e + K z

e qt° +Kz

- qt

I +Kze )A---_K _n (
q - qt o

1 +Kze

(26)

The alternate solution to the differential equation _ = ¢_z z + _ z + y

when _ z -4 c_y < 0 is given as

Z [ tan_l( Z_z + _)
q* q*

whe re

q* = (4Ct x - 13z) 1/z >0

Solving for z as a function of t gives

q*tan(q*/Zt + tan-'_ /q*) - [3
Z _- g

Zc_

The position x is determined from

,_t _t
W dt = (Az + B)dtX =

_t x Jt
o O

or

r,[A{I t _-_ q':"
o

tan < cl_ t + tan-2 q*
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The solution is

cos( q* t + tan_1 13_
_ __Aln ( 2 o q*,] _ - _ (t-t) + B(t-t ) • (27)

x - (i / q*t + tan_l.__ _ J 2Ct o o
co s_ 2 q* ]

A substitution of Equations (17) and (18) and either (26) or (27) into

Equation (4) allows the wind error to be written in terms of the parameters

_, _, and y of the quadratic rise rate. Numerical minimization of Equation

(4) can be achieved by varying these rise rate parameters.
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Wind Errors Fro_ Linear and Quadratic Rise Rate Functions

/

Optimum Linear Rise Rate - In order to determine the linear rise

rate profile that minimizes wind error, a wide range of surface rise rates

and rise rate slopes was examined. Surface rise rates were varied between

two meters per second and ten meters per second. Both increasing and

decreasing rise rate slopes versus altitude were considered._° The constraint

that the rise rate could not equal zero below 18 kilometers was invoked in

choosing slopes. The linear rise rate functions for surface rise rates from

two meters per second to ten meters per second are presented at the left

side of Figures 23 through 27. The light, moderate, and severe wind profiles

were chosen as wind input. The smoothing interval was fixed at 25 meters.

The direction of the wind was chosen as blowing along the X-axis. The Y

component of wind was chosen as W = 0. The simplified equation for error
Y

in wind magnitude, Equation (4), is therefore applicable.

Figures 23 through 27 show the wind error for surface rise rates of

two through ten meters per second as a function of altitude and rise rate

functions for the three wind profiles. The correspondence between rise rate

curves and wind error curves is l-I order preserving. That is, the first

rise rate curve from the left corresponds to the first wind error curve, the

second rise rate curve corresponds to the second wind error curve, etc. In

all figures presented the dashed lines that sometimes appear on wind error

plots indicate slant ranges between i00 kilometers and 150 kilometers - the

limiting constraints of the FPS-16 radar. When the slant range exceeds

150 kilometers, the wind error plots are terminated - indicating that radar

tracking is no longer feasible. The broken lines indicate elevation angles of

10 ° and 50; the first broken line from the right indicating 10 ° elevation while

the second line (when it appears) indicates 5 ° elevation. The better rise

rates on Figures 23 through 27 are those that decrease with altitude.
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Results froz_ these figures show that a linearly increasing rise rate,

for any surface rise rate, is undesirable because the wind error increases

as altitude increases. Only cases where the rise rate is constant or decreases

with altitude show promise of providing acceptable wind errors. However,

rise rates which become too slow are also unacceptable because they produce

slant ranges and/or elevation angles which exceed FPS-16 tracking capabilities.

None of the rise rates, however, will provide even one meter per second

accuracy, over 25-meter smoothing, to 16 kilometers, under anything but

the light wind condition. The decision as to which is the best or optimum

rise rate depends upon the purpose or application of the measurement. For

example, if 25 meter winds are only required to 12 kilometers under light

to moderate wind fields, rise rate 2, Figure 24 (2nd rise rate from left on

Figure 24) and rise rate 1, Figure 25 are desirable. If, on the other hand,

data is required to 18 kilometers,

because of excessive slant ranges.

25 is probably most satisfactory.

neither of these rise rates is satisfactory

In this case, rise rate number 2, Figure

It is also interesting to note that the normal

rise rate of the Jimsphere is between the range of number 2, Figure 24, and

number 2, Figure 25, and hence is about the best that can be expected for

the light and moderate wind fields.

Optimum Quadratic Rise Rate - In order to determine the quadratic

rise rate profile that minimizes wind error a wide range of the quadratic

parameters _, p , and _ had to be chosen. The technique used to determine

practical bounds for these parameters is the following.

The parameters Ct, _, and ¥ of a quadratic function _ = c_zz +_z + ¥ can

be characterized by three geometrically meaningful constraints. They are

a) the _ intercept y, b) the value of z where the function _ = f(z) is a maximum

or minimum, in particular z = -_/2ct, and c) the value of the function at its

maximum or minimum, in particular _ = 4a_-_ z/4c_ (see Figure 28). By

specifying these parameters, y, _ /2a, and 4a¥-_z/4c_, one easily solves

for c_, _, and ¥. The purpose of working with ¥, _/2_x, and 4_¥-_z/4c_

is for the value of the geometric interpretation. Reality determines guidelines

58



u

o

.[q

13 -8 4_Y-_ z

i

i

, I I I I l I
2 4 6 8 10 IZ 14

z_.km

Figure 28. Geometric Interpretation of the Parameters O_,

_, and ¥ of a Quadratic Rise Rate Function.

for what types of rise rate functions are physically practical. For a

reasonable range of values for surface rise rate the bounds were chosen as

two meters per second < 7(< 10 meters per second. The range of values for

the z altitude where the maximum and minimum rise rate occurs was chosen

as two kilometers <-_ /2(I < 14 kilometers. The range of rise rate values

at the maximum or minimum was chosen as l <4c_(-_ z/40_ < 13 m/s.

Solving for <Xand _ in terms of u = -_ /2c_ and v = 4(_x/-_z/4o. gives

_._.._-V

G = U2

and

w

2v- 2y
u

59



Figures 29 through 43 show wind errors associated with the quadratic rise

rates defined by the ranges of variables specified above. Not all of the

defined rise rates are practical. Nevertheless, any practical rise rate is

reasonably approximated by at least one of the defined functions.

The wind error plots shown for linear and quadratic rise rate functions

(Figures 23 through 27 and 29 through 43) were derived under an assumed

radar time constant of At = 0.5 second and fixed smoothing interval of Z5

meters. Since an FPS-16 radar may provide a time constant as small as

At = 0. 1 second under a high servo-bandwidth and optimum tracking conditions,

it is of interest to determine the effect of a change in the time constant on

wind errors. Of equal interest is the effect a change in the smoothing interval

will produce on wind errors. The following two sections are addressed toward

these problems.
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Effect of Smoothing Interval on Wind Accuracy

Recalling Equation (17a) the smoothing interval, S, is given by

S = (N-1)_At (17a)

and number of points, N, associated with the smoothing interval, S, as:

S
N - _ _xt + 1 . (17b)

Substituting (17a) into the wind error equation for a constant directional

wind field (Equation (4)) gives the wind error in terms of the smoothing interval.

That i s:

2
0-

WX

2120-
Z x

x S S(;at

If the smoothing interval, S, is changed to S' then the ratio of wind

errors from the S' interval to the S interval is:

[ '<?)1'
s ,,/ s +2]*w (s') ( ;.at + I ]< ;at

_At + 1 _A-'-"_ +

/2

(28)

For the case when the original smoothing interval S is 25 meters (Figures

23 through 27 and 29 through43) and At = 0.5 second, Equation (28) becomes:

(S')
W

(i5)
W

z _ . z . _ •

(29)

Equation (29) defines the multiplicative factor that transforms wind errors

from any of the previous Figures 24 through Z7, 29 through 43, for 25 meter

smoothing into wind errors for any arbitrary smoothing interval S' Equation

(29) is plotted as a function of S' and _ in Figure 44.
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Figure 44. Multiplicative Factor to Convert Wind Error for 25 Meter

Smoothing into Wind Error for 10 Through 100 Meter Smoothing.
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The following example illustrates the use of Figure 44 to determine

wind error for various smoothing intervals. For the linear rise rate function

number l (Figure 26) the rise rate is _ = 4 meters per second at 9 kilometers.

The corresponding wind error for 25 meter smoothing in a moderate wind

field is 0.7 meter per second. If the smoothing interval were ten meters

then the wind error would be 0.7 x 3.4 = 2. 38 m/sec where the multiplicative

factor 3.4 is derived from the S' = 10 meter line from Figure 44. For 75

meter smoothing, the wind error would be 0.7 x .20 = . 14 meter per second.

Figure 44 shows the multiplicative factor _w(S)/_w(25) to be, in most

cases, a weak function of _. The multiplication factor can be approximated

independently of _ by ignoring the lower order terms of Equation (29). Equation

(29) then simplifies to

¢ (S)
w

Cw(Z5)

which is independent of z. Using the previous example and the approximated

multiplication factor, the ten meter smoothing wind error would be 0.7 x

3.95 = 2.77 meters per second and the 75 meter smoothing wind error

0.7 x. 19 = • 13 meter per second.
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Effect of the Time Constant on Wind Accuracy

The wind errors shown in Figures 23-27 and 29-43 assume typical

FPS-16 coordinate errors of 0. l rail in azimuth and elevation and five meters

in slant range• A time spacing of At = 0.5 second between independent points

is also assumed. The amount of decrease in wind error that would result

under ideal tracking conditions where the time constant At could be as small

as 0. 1 second can be shown as follows. If the time constant is changed from

At to At' while the smoothing interval remains fixed, then the number of

points in the smoothing interval will also change. The relationship between

the time constant, smoothing interval, and number of points is:

S = (N-l) AtE .

Holding S fixed while changing At and N to At' and N' gives the equality

(N-1)At = (N'-I)At'

or

N' = (N-I)A__t_t + 1 . (30)
At'

The ratio of wind error when the time constant is At' to wind error when the

time constant is At is:

¢w(At')

Z12_
x

N'(N'Z - 1}At 'z
Z

12cr
x

N(N z - 1)&t 2

(31)

Substituting Equation (30) into (31) gives

_w(At') [ N(NZ _l)At ]l/z

(32)

where N is the number of points in S with time spacing At. Equation (32)

can be approximated by
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w _ _ At----iq (33)(At) At A
w

which is independent of N.

A plot of Equation (32) for a At = 1/2 and various values of At' is given

in Figure 45. The following example illustzates the use of Figure 45. For the

linear rise rate function number 1 (Figure 26) the wind error for 25 meter

smoothing in a moderate wind field at 9 km is 0.7 m/sec. The rise rate at

this altitude is _ = 4 meters per second and the time constant is At = 1/2..

The number of points in the 25-meter smoothing interval is

S
N - _At + i = 13.5

If the time constant is changed to At' = 0. 1 second, the multiplicative factor

from Figure 45 for N = 13.5 is 0.49. Thus, the wind error resulting if the

time constant were 0. 1 second is 0.7 x 0.49 = 0. 34 meter per second.

Similarly, for a time constant of two seconds, the resulting wind error

would be i. iI meters per second. If the approximation formula, Equation (33),

were used, the resulting wind errors for At = 0. 1 and At = 2.0 seconds would

be 0.7 x 4.5 = 0. 31 mete9 per second and 0.7 x 2 = 1.4 meters/second.
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BALLOON DIMENSIONS

The previous sections have shown the wind accuracy that will result

from various rise rate functions under given wind conditions. It is now

realistic to examine what balloon dimensions are required to provide a specified

rise rate function. This question cannot be answered without first specifying

what type balloon is being considered (e.g., a constant volume spherical balloon,

expandable balloon, etc.). To answer this question for expandable spherical

balloons the following approach can be pursued. It will be shown in this section

that to achieve a desired rise rate at a specified altitude there is only one

radius smooth (or one radius roughened) spherical balloon that can achieve

these results, consequently, a balloon can be designed to provide a specified

rise rate profile by determining the balloon radius needed to achieve the rise

rates specified by the profile at various altitudes. A balloon manufacturer

can then determine what type expandable balloon will achieve the proper radius

at the proper altitude. For other type balloons other methods can be used to

provide a stSecified rise rate profile. A change in the skin thickness, an

additional ballast, or a relief valve could change the rise rate profile. In

fact, any change in a parameter of the rise rate equation (derived in this

section) would effect the entire rise rate profile. A study of the effect

produced by a variation in each parameter of the radius equation would be

valuable in determining what parameters can best be manipulated to achieve

various types rise rate functions. The discussion presented in the following

section has stopped short of a sensitivity analysis of the rise rate equation.

What is presented is a means of determining what radius balloon will provide

a specified rise rate at a specified altitude. The altitudes specified are 10 km

and 14 kin. The results have direct application for expandable balloon design

for smooth and roughened spheres. In addition, the technique presented is

intended to serve as a guide to anyone who wishes to consider the variation of

other parameters in the rise rate equation.
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Balloon Radius Versus Rise Rate - The equation of motion in the vertical

direction of a rising sphere is given to a good approximation as:

1

(ruskin + mgas)_ = - -_ p C D A_Z _ P volg + (ruskin + mgas)g (34)

whe re

ruskin , ragas are mass of the balloon skin and mass of the contained

gas, respectively,

vol is volume of the balloon,

z, _ are vertical velocity and acceleration,

g is gravitational acceleration = 9.8 m/sec 2 ,

p is density of air,

C D is drag coefficient,

and

A is the cross-sectional area of the balloon.

Over small regions of the atmosphere, the density can be considered

constant and thus the balloon will approach an equilibrium or terminal

velocity when the acceleration approaches zero.

Under this condition, Equation (34) becomes

1 Z

p CDA_ - pvolg + (mskin+ mgas)g = 0 . (35)

The skin mass can be written as

As A (36)
ruskin P skin s

where As is the thickness of the skin and A is the surface area.
s

Smooth Spherical Balloon - For a smooth spherical balloon, the surface

area is:

A = 4w rz
S

Equation (36) for a smooth sphere becomes

ruskin = p skin/kS 4wr z • (37)
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The mass of the gas is given by

m = p vol
gas gas

For a sphere, Equation (38) is given by

4
m - _rr3p

gas 3 gas

(38)

(39)

The cross-sectional area A defined in Equation (35) is given for a sphere as:

A = _rrz . (40)

A substitution of Equations (37), (39), and (40) into Equation (35) and solving

Equation (35) for r, the radius of the sphere, gives the radius equation for

smooth spheres:

P skin

-CD_Z + 8Asg---
r = P , (41)

8

Equation (41) can be used to estimate the radius of a smooth sphere

required to achieve a specified rise rate (_). The quantities that must be

known or estimated to solve Equation (41) for r are: a) the density of the

material used to make the sphere, b) the thickness of this material, c) an

estimate of the drag coefficient of the sphere, and d) the density of the air

at the altitude where the specified rise rate is desired. Of these quantities,

only (c), an estimate of the drag coefficient, provides any degree of difficulty.

The drag coefficient for a slow-moving sphere (Machm0) is sketched as a

function of Reynolds number in Figure 46. The sharp change in the drag

curve occurs at the approximate Reynolds number of 2.5 x 10 S. An ascending

sphere will decrease in Reynolds number as it ascends. Thus, it will traverse

the drag curve sketched in Figure 46 from right to left. At Reynolds numbers

greater than the critical value (2.5 x I05), the flow around the sphere is

turbulent and a smooth sphere will experience random self-induced aerodynamic

oscillations. These random oscillations make small scale wind determination

impractical with a smooth sphere. After passing through the critical Reynolds
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Figure 46. Drag Curve for a Smooth Sphere.

number, the flow around the sphere becomes laminar and the self-induced

motions sharply diminish. Small scale wind measurements are again possible.

For the sake of design engineering, a satisfactory estimate of the drag coefficient

function can be taken as:

C D = .45 for R_< 2 x 105

C D = .30 for 2 x 105<R <4 x I05

C D = . 15 for R_>4 x 105

(42)

This function can be used to estimate C D if R_ynolds number can be determined.
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Reynolds number is given by the expression

R = Z p_r/_ (43)

where _ is the coefficient of viscosity of air and is a weak function of altitude.

To achieve a desired _, at a specified altitude, the Reynolds number can be

determined from Equation (43) for any proposed radius. The determination of

R allows the estimation of G D from Equations (42) which in turn is needed

in Equation (41).

An example will illustrate how Equation (41) can be used to determine

the balloon radius needed to achieve a desired rise rate at a specified altitude.

The following assumptions will be made about the balloon:

a) The balloon is a smooth sphere of radius r.

b) The skin is mylar of thickness 1/4 rail = 6.35 x 10-6m.

c) The sphere is filled with helium at ambient pressure and temperature.

d) No additional mass is attached to the skin.

Under these assumptions, the evaluation of Equation (41) for a rise rate

of _ = 10 meters per second at 10 kilometers altitude is illustrated below:

_ = 10 m/sec

z = 10 kilometers

= 414 gr/m 3P 10kin

As = 6. 35 x I0-6

g = 9.8 m/sec z

Phelium/P = 4/29

= 1.2 x 106gr/m 3
P mylar

G D = f(R) and is either .45, .30, or .15, depending upon r. Equation

(41) can be evaluated for each of the three values of G D to determine three

values of a radius r. For each radius r, an associated Reynolds number can

be calculated. The Reynolds number then uniquely determines the C D

corresponding to that radius. If the corresponding radius and G D match the

original chosen G D for that radius, a valid combination has been found. If not,

the originally chosen G D and radius are an inconsistent combination that will
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not solve Equations (41), (42), and (43) simultaneously. That is, from Equation

(41),

r = 2.06 for C D = .45

• = .30
r = 1 40 for C D

r = .73 for C D = . 15

The Reynolds numbers associated with each of the above radii are derived

from Equation (43) as:

r = 2.06 R = 2rp_/_ = 1.2x I06 >4x 10s -_

r = 1.40 R = 7.9x I05 >4x I0 5 -_ CD = .15

r = .73 R = 4.1 x I05 >4 x 105 -_ C D = . 15

Applying Equations (42),

r = .73 R =

the only consistent triplet of r,

4.1 x l0 s, and C D = . 15

Thus, a 0.75 meter radius smooth sphere,

C D = .15

R, and C D is:

made of 1/4 rail mylar, filled

with helium, with no ballast or additionai mass, will, at ten kilometers,

have a rise rate of 10 m/sec. This sphere, however, will experience

difficulties in obtaining wind measurements since it will be in a turbulent

flow condition and exhibit random aerodynamic osciIlations.

The radius necessary to achieve other rise rates at altitudes of ten

and 14 kilometers under the same four assumptions (a,b, c, d) is given in

Tabies 3 and 4. The radii given in these tables are the only radii that will

provide the desired rise rates under the stated assumptions.

As seen in Tables 3 and 4, large rise rates of 10 to 20 m/sec are

possible with smooth spheres of modest diameters• One difficulty with using

spheres of these dimensions for smali-scale wind determination is the

turbulent flow condition associated with the G D = . 15. The random aerodynamic

motions associated with turbulent flow make all but the gross wind structure

impossible to observe from the trajectory of *he sphere•
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TABLE 3

RADIUS AS A FUNCTION OF z AT 10 KILOMETERS ALTITUDE

FOR SMOOTH SPHERE

Rise Rate (_. "-- rn/sec)

4_

_D

0

_D

.15

• 30

.45

Z 4 6 I0 15 Z0

• 14 .38

.54

•73 1.56 2.73

TABLE 4

RADIUS AS A FUNCTION OF z AT 14 KILOMETERS ALTITUDE

FOR SMOOTH SPHERE

4_

O

D

.15

.30

.45

Rise Rate (_. _ m/sec)

Z 4 6 i0 15 20

1.61 2.78

•20 .44 .84
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Rough Spherical Balloons - Roughening cones added to the smooth sphere

have shown, in the case of the Jimsphere, that the random motions of a smooth

sphere can be transformed into regular oscillations over a very small

frequency band. These oscillations can then be removed from the trajectory

by a properly designed filter. However, a secondary effect of adding the

roughening cones is a change in the drag coefficient curve. For the Jimsphere,

the dra_ coefficient has been derived by Fichtl, DeMandel, and Krivo [12] to

be as shown in Figure 47. Thus, the roughening elements in increasing the

sphere stability also increase the drag coefficient at supercritical Reynolds

numbers. Thus, the entries in Tables 3 and 4 would not be valid for roughened

spheres because of the different drag coefficient curve. For engineering

application, the drag coefficient curve for the roughened sphere will be taken as:

C D = .47 for R<_I. 2 x I05

C D = .60 for 1.2 x 10s <R < 2.5 x 10s (44)

C D = .72 for R_>2.5 x I0 s

The skin mass of the roughened sphere also differs from that of a smooth

sphere because of the roughening elements. It will be assumed that the skin

surface area of a rough sphere is 1.4 times that of the corresponding smooth

sphere of the same diameter. The other balloon associated variables m
g

and A needed to derive the radius equation for roughened spheres can be

taken as the corresponding parameters for smooth spheres.

The radius equation for roughened spheres is

P skin

-CD_,Z + 11.2 £xsg--
r -- P

5g( 1

Solving Equations (43), (44), and (45) simultaneously for r determines the

radius of roughened spheres necessary to produce given rise rates at specified

altitudes. Tables 5 and 6 show the radii required to produce 2 to 20 m/sec

rise rates at 10 and 14 kilometers. A comparison between Tables 3 and 4

and Tables 5 and 6 shows that larger radii are required to produce a given
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TABLE 5

RADIUS AS A FUNCTION OF Z AT I0 KILOMETERS ALTITUDE

FOR ROUGHENED SPHERE

Rise Rate (m/sec)

2 4 6 I0 15 20

o

L)

•47

•60

.7Z

.17

•52

1.24 3. 29 7. 28 12. 87

TABLE 6

RADIUS AS A FUNCTION OF Z AT 14 KILOMETERS ALTITUDE

FOR ROUGHENED SPHERE

Rise Rate (m/sec)

2 4 6 i0 15 20

.47

_D

60.__ •

o .72
0

.25 •5O

1.31 3.36 7.35 12.94
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rise rate from a roughened sphere than from a smooth sphere - particularly

for large _. This is because the drag coefficient is larger for rough spheres

than for smooth spheres, especially at supercritical Reynolds numbers.

Perhaps more practical than designing a large diameter balloon to

measure winds is to design a streamlined-non-spherical balloon possessing

a low drag coefficient at large Reynolds numbers and that does not possess

the random aerodynamic motions associated with its flow conditions. The

foregoing analysis that was performed for smooth and roughened spheres can

also be undertaken for other non-spherical type balloons. All that is required

is

a) A knowledge of the drag curve for the balloon.

b) An expression for the volume of the balloon.

c) An expression for the surface area of the balloon.

d) An expression for the cross-sectional area of the balloon.

Of these quantities, only the drag coefficient curve may be difficult to come by.

An expression for each of the other quantities can certainly be derived.

Wind Sensing Capability of Fast Rising Balloons - The previous section

discussed balloon diameters required to achieve specified rise rates. Of

equal importance is the ability of the balloon to respond to the wind field.

That is, can one assume that the horizontal velocity of the balloon is the

wind velocity, or does the balloon's response sharply lag the wind response?

One way of attacking this problem is to assume a sinusoidal varying wind

field versus altitude of the form:

W = A sin (_t)
X

Under this assumed wind field and assuming the balloon is a point mass,

it is possible to solve the equations of motion for the balloon velocity. The

amplitude of the balloon velocity oscillation can then be ratioed to the

amplitude of the sinusoidal wind field to determine the percentage response of

the wind field shown in the velocity of the balloon.
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If the sinusoidal wind field W = A sin _t is substituted into thex
horizontal equations of motion and the resulting differential equation integrated

for the balloon velocity, the result is (Ref. Ill, p. 78):

b t/K 1

- e + A' sin (_t + COB ) (46)x K1

whe re

b is a constant of integration,

( _(K1 - KZ) _cOB = arctan l+K1Kz_Z ] ,

K1 = (m+m')_
g(m-p vol) '

m'_
K 2 =

g(m-pvol) '

and

m' : the apparent mass of the balloon,

A ! __
All + _Z(KzZ+KzZ+KlZKzZ_z)]I/z

1 + KlZ_J 2

The first term of Equation (46) is the transient part of the solution

and rapidly approaches zero as t increases. The second term represents

the steady state solution. The ratio of the amplitude of the steady state

balloon velocity to the amplitude of the wind velocity is therefore:

A' [1 + _Z{KlZ+KzZ+KlZKzZWZ)]l/z

DB - A - 1 + K 12_z . (47)

Equation (47) gives the percentage response of the amplitude of the balloon

velocity to wind velocity for the frequency _0/2w. The frequency is related

to the wavelength through the rise rate of the sensor by:

x = (2_v/_);_

where k is the wavelength

The velocity response of a balloon to the wavelength k can be calculated

from Equation (47) as a function of the balloon rise rate and the balloon
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dimension needed for evaluating K I and Kz. It is interesting to note that the

balloon response does not depend upon the drag coefficient, except indirectly

through its effect on the rise rate. Thus, other dimensions being equal

(i.e., mass, diameter) a smooth and roughened sphere of the same rise

rate would have the same horizontal response to the wind field. The actual

velocity response of the smooth and roughened spheres represented in

Tables 3, 4, 5, and 6, at 10 and 14 kilometers, have been calculated for

wavelengths of 50 to 100 meters and are presented in Tables 7, 8, 9, and 10.

The tables were derived under the assumptions that the balloon is a point

mass. The diameter of large balloons may be a significant percentage of

the wavelength being examined and thus the point mass assumption is dubious.

For example, a 10 meter radius balloon has a diameter equal to 40% of a

50 meter wavelength. These results show excellent balloon response to

50 and 100 meter wave structure. Even the fast rising balloons of large

radii show response to at least 79% to 50 meter wave structure. Thus, the

response of any of the balloons considered, either smooth or roughened, is

most satisfactory and is not a limiting factor in designing a fine scale wind

measurement balloon system.

Summary and Conclusions - The error in the magnitude of the horizontal

wind field as computed for balloons with linear and quadratic rise rates

ascending through a light, moderate, or severe wind field has been derived.

The linear and quadratic rise rate functions chosen span the set of all practical

rise rate functions for a rising balloon. Figures are presented which show

the wind error versus altitude for each rise rate, and each wind field,

assuming 25-meter linear smoothing. Nominal FPS-16 radar errors of 0. 1

rail in azimuth and elevation, five meters in slant range, and a time constant

At = 0.5 second are assumed throughout. The wind errors derived under

these assumptions can be adjusted in the case when the smoothing interval

is not 25 meters, or the time constant is not 0.5 second. Exact and

approximate expressions for these adjustments have been determined. The

results and figures presented are useful in determining the ultimate capability
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of rising balloon systems for measuring wind from the surface to 18 kilometers.

Using the figures presented, one can estimate the wind accuracy that can be

achieved by any type rising balloon by knowing only its rise rate behavior

versus altitude. In addition, the figures can be used in balloon design to

determine what rise rate function is needed to achieve specified accuracies.

Having specified a desired rise rate at a given altitude, the radius of

a smooth and roughened sphere needed to achieve this rise rate has been

derived. Since the equilibrium rise rate depends largely upon drag coefficient,

it was necessary to assume two drag coefficient curves - one for a smooth and

one for a roughened sphere. The curves chosen were from Hoerners [1]

for the smooth sphere; and the drag coefficient curve for the Jimsphere [1Z]

was assumed for a roughened sphere. Tables 3-6 show the balloon radius

for smooth and roughened spheres needed to achieve two meter per second to

Z0 meter per second rise rates at i0 and 14 kilometer altitudes. Due to the

higher drag coefficient for roughened spheres, a much larger radius is

required for roughened spheres to achieve the faster (I0 m/sec to Z0 m/sec)

rise rates.

The wind errors estimated in this report are in actuality balloon

velocity errors since it is assumed that the balloon is a perfect wind sensor.

That is, balloon velocity equals wind velocity. It has been shown in Tables

3- 6 that large radii balloons are required to achieve ten meter per second

or faster rise rates. It is important to know if these balloons, as well as

smaller radii balloons, are good wind sensors. It has been shown in Tables

7-10 that all of the different radii balloons given in Tables 3-6 are indeed

excellent wind sensors. Even the large diameter rough spheres show at

least a 79% response to a fifty-meter wave. Consequently the balloon

response provides no constraints in designing a fine scale wind measurement

balloon system.

The tables relating rise rate to radius have important applications

to the design of a rising balloon system. The proper perspective in
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interpreting these tables, however, is essential. Careful attention must be

paid to the assumptions under which the rise rate vs. radius tables were

generated. The basic assumptions were that the drag curves depicted for

smooth and rough spheres are reasonably accurate and that the spheres are

non-exandable, 1/4 rail mylar skin, helium-inflated to ambient pressure,

with no additional mass, ballast or instrument package. Any change in one

of these assumptions would produce a different set of rise rate vs. radius

tables. Consequently, by varying these assumptions, other means of obtaining

a specified rise rate are feasible. For example, to achieve a fast rise rate,

a more desirable means may be the design of a stream-lined balloon with a

low drag coefficient. Other possible means would be the design of an expanding

balloon, or perhaps an evaporating mass balloon (i.e., a balloon which loses

mass, as well as gas, as it ascends). The techniques derived in this report

can be used to provide rise rate versus radius tables under these and other

assumptions. Before designing an advanced balloon measurement system, one

should carefully compare and evaluate rise rate versus radius tables for various

type balloon structures.

There are other practical considerations in balloon design and evaluation

which have not been discussed in this report and are nevertheless of considerable

importance. Cost, for example, is always of fundamental importance in the

design of any system. Some of the large radius balloons discussed in this

report are impractical for routine operational systems because the cost of the

helium to fill these balloons would be exorbitant. Another practical consideration

is the free-lift buoyancy force of a fast rising balloon. Large diameter

balloons could provide a buoyancy force in excess of the weight of the man

anchoring the balloon.
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